

Development and Validation of Stability Indicating RP-HPLC Method for Simultaneous Estimation of Olanzapine and Fluoxetine Hydrochloride in Bulk and Combined Tablet Dosage Form

^{1,} Sumbre DB, ^{2,}Kolhe SD, ³ Dhonde PS, ⁴Bodkhe VD*

¹Zuventus Healthcare Limited, Pune, Maharashtra, India ^{2,3,4}ACSs College of Pharmaceutical science and research Ashti, Beed Maharashtra, India Corresponding Author: Bodkhe VD*

Submitted: 25-01-2022

Accepted: 08-02-2022

ABSTRACT: Stability indicating RP-HPLC method for evaluating Olanzapine (OLNZ) and Fluoxetine Hydrochloride (FLUX) in combination tablet dose form developed and validated. In this study, an isocratic reverse phase-high performance liquid chromatography (RP-HPLC) method for simultaneous quantification of OLNZ and FLUX in bulk and pharmaceutical dosage forms was developed and validated. Force degradation study are analyse by loaded the drug substances to stress condition Finally the separation and quantification of drugs from degradation products was determined on a Hypersil BDS C18 column (4.6 x 250 mm, 5µ) prepared mixture of phosphate buffer Ph 6 by OPA and acetonitrile in the proportion of 55:45 (v/v) mobile phase ,flow rate was 1.0 mL/min, temperature of coloum was designed at 25 0C, and also detection at 228 nm. Retention time of OLNZ 4.7min and FLUX 7.4 min achieved. The recovery evaluation was found satisfactory and the correlation coefficient were OLNZ (0.99) and FLUX (0.99), which is indicates the linearity of methods was within the specification limits. The developed analytical method can used for regular simultaneous estimation and quantification of OLNZ and FLUX in bulk dosage form excluding any intervention of excipients.

KEYWORDS: Olanzapine, Fluoxetine Hydrochloride, HPLC, Validation.

I INTRODUCTION:

The Olanzapine is a yellow Crystaline powder having molecular wight 312.43 which is soluble in Acetonitrile, Methanol,Water,Chloroform. Olanzapine's act as antipsychotic which is not a known acitivity. It Antagonism of dopamine and serotonin receptors may be involved. Dopamine receptor antagonistism is linked to extrapyramidal consequences, such as tardive dyskinesia (TD), as well as therapeutic outcomes. Antagonism of muscarinic acetylcholine receptors is linked to anticholinergic another effects such dry mouth and constipation, as well as the suppression or reduction of extrapyramidal effects during the course of treatment, but it does not protect against the onset of tar dive dyskinesia..^[1,2,3,4,7]

Fluoxetine HCl is a white crystalline powder with molecular weight 345.8 and which is soluble in

acetonitrile, water, Trtrahydrofuran, dimethyl formamide. Fluoxetine HCl is dopamine reuptake at therapeutic doses and also a selective serotonin reuptake inhibitor (SSRI) It causes serotonin to last longer once it is produced by delaying its reuptake. A considerable rise in synaptic norepinephrine and dopamine has been observed in rats after large dosages. Dopamine and norepinephrine may thus play a role in Fluoxetine HCl's antidepressant activity in humans at supratherapeutic doses (60–80 mg). This impact could be mediated by 5HT2C receptors, which are blocked by Fluoxetine HCl at greater dosages.^[6,8,9,10,14]

II EXPERIMENTAL WORK:

Standard solution of Olanzapine and Fluoxetine HCl

Weighed quantity about 50 mg of Olanzapine and Fluoxetine HCl and transferred into different two 100 ml volumetric flask, added 70 mL, water: acetonitrile (50:50) ,Sonicated for 10 Min , diluted upto the mark with the same solvent. Further diluted 10 ml of above solution to 50 ml of volumetric flask and diluted with using same solvent.

Determination of λ max of Olanzapine and Fluoxetine HCl

The 20 μ g/ml standard solution of Olanzapine was scanned in the scale of 200-400 nm and λ max was observed at 228 nm against Buffer Solution pH 6.0

acetonitrile (55:45). Same as, for Fluoxetine HCl also observed at same lambda i.e. 228 nm. Hence the isobestic point 228 nm was selected as wavelength for RP-HPLC analysis of same drugs. Simultaneous quantification of Olanzapine and Fluoxetine HCl in Bulk Drug and Tablet Dosage form by using RP-HPLC method.

Preparation of Solution: Preparation of Buffer solution:

2.74 gm of Sodium dihydrogen phosphate monohydrate and 4ml Triethylamine was added to 1000 ml in Milli-Q water. The pH was adjusted to 6.0 ± 0.05 with OPA.

Mobile phase:

Prepare a mixture of Buffer pH 6.0 and acetonitrile in the proportion 55:45 v/v, respectively. Mix well and sonicated for 15 mins. Prepared mobile phase was then filtered through $0.45\mu m$ nylon membrane filter.

Diluents: Prepared mobile phase Buffer: Acetonitrile $(55:45 \ \% v/v)$

Stock solution of Olanzapine and Fluoxetine HCl:

Accurately weighed quantity of Olanzapine and Fluoxetine HClof about 20mg and 80mg is added into each 100 ml volumetric flask, about 30 ml of diluent was added and sonicated to dissolved above drugs.

Standard preparation:

5 ml of stock solution of was diluted out and added to 50 ml volumetric flask and make volume up to up to the mark with diluents.(Concentration of Olanzapine:20ppm and of Fluoxetine HCl:80 ppm) Sample preparation:

Accurately weighed twenty tablets; the average weight were determined. Then tablets were crushed to fine powder and an accurately weighed powder equivalent to 20 mg of Olanzapine was added into a 100volumetric flask. Afterwards, 70 ml of diluents was added, with intermittent swirling and sonicated for 20 minutes, stay it to cool and made up to volume with diluent and mix. Allowed to settle for 5 minutes, after that filter with 0.45μ syringe filter discarding first few ml. Further 5ml of filtrate was diluted to 50 ml with diluent and mix.

Method of validation:

System appropriateness was determined by injecting a standard solution (100 g/ml) six times and recording the chromatograms. The percent RSD for the area reaction from six duplicate injections of Standard solution should be less than 2.0 percent. In Standard solution, the tailing factor

for Olanzapine and Fluoxetine HCl should be less than 2.0. $.^{[4,5,11,12]}$

Specificity: The ability to assess the analyte definitively in the presence of components that might be present is referred to as specificity. The capacity of an analytical procedure to quantify the analyte of interest precisely and particularly without influence from blanks or placebos is referred to as specificity. ^[13,15,16]

There is no peak observed in blank and placebo at the retention time of Olanzapine and Fluoxetine HCl.From above data it is concluded that peak of Olanzapine and Fluoxetine HCl in standard and sample are pure.

FORCED DEGRADATION STUDY:

Tablets and placebos were submitted to various stress settings to conduct forced degradation tests in order to determine whether analytical method for the assay was stabilityindicating or not. As specified in ICH Q1A, stress tests were conducted under acid/base hydrolysis, oxidation, and heat conditions (R2). Drug compounds and drug products were degraded in the solid state using thermal and UV radiation. Several trials were carried out with varying degrees of intensity for each stressful scenario, resulting in a degradation of up to 5-30 percent. [17,18,19,20,21]

Photo degradation

20 Tablets, Olanzapine and Fluoxetine HCl 100mg drug were taken in separate Petri Plate and exposed it under UV light for 48 hrs and an integrated near UV energy of NLT 200 w/s.

Thermaldegradation

20 Tablets, 100 mg of each Olanzapine and Fluoxetine HCl drug were taken in separate Petri Plate and exposed it under 80°C in hot air oven fora period of 48 hours for dry heat sterilization.

Acid degradation

Forced degradation was performed for Tablet, Olanzapine and Fluoxetine HCl drugs under acidic condition. 0.1N HCl (0.85ml concentrated HCl in 100ml of water) was prepared for this study.

Alkalidegradation

Forced degradation was performed for Tablet, Olanzapine and Fluoxetine HCl drugs under alkali condition. 0.1N NaOH (0.4gm NaOH in 100ml of water) was prepared for study.

Oxidation degradation

Forced degradation was performed for Tablet, Olanzapine and Fluoxetine HCl drugs under alkali condition. 10% H₂O₂ (33ml H₂O₂ in 100ml of water) was prepared. Hydrolysis Degradation

Forced degradation was performed for Tablet, Olanzapine and Fluoxetine HCl drugs under alkali condition.

Linearity

To get the desired analyte concentrations, standard solutions were created by diluting known amounts of intermediate stock solution with the diluent, as described in Table. The regression coefficient 'r2', the y-intercept, and the slope of the regression were derived using a graph of Concentration (ppm) vs. Area. System suitability criteria should be fulfilled. Response should be linear. Co-relation coefficient (R) should not be less than 0.999% Limit of Y- intercept should be within $\pm 2.0\%$ of the corresponding Y-co-ordinate of the working level.^[1,2,3,6,11,12,17,18,19]

Linearity Level%	VolumetakenfromLinearitystocksolution(mL)	Total volume (mL)	Concentration(ppm)		
			Olanzapine	Fluoxetine HCl	
50	2	50	10	40	
75	3	50	15	60	
100	4	50	20	80	
125	5	50	25	100	
150	6	50	30	120	

Table 01. Preparation of linearity samples

Accuracy (Recovery Study): Accuracy was measured from 50% to 1500% of the sample concentration. A calculated amount of Olanzapine and Fluoxetine HCl was added to the placebo to achieve sample concentrations of 50 percent, 75 percent, 100 percent, 125 percent, and 150 percent.

Concentration (%)	Olanzapine(mg)	Fluoxetine HCl(mg)	Placebo(mg)
Level 1 (50%)	10	45	1134
Level 2 (75%)	15	66.75	1134
Level 3 (100%)	20	90	1134
Level 4 (125%)	25	111.2	1134
Level 5 (150%)	30	133.5	1134

Table 02: Sample preparations for accuracy

Acceptance criteria

System suitability criteria should be fulfilled. Mean recovery for 50% to 150% should be in the range of 99.83% - 100.66% and individual recovery for 50% to 150% should be in the range of 100.51% - 100.95%. Precision:

Precision of System :

To guarantee that the analytical system was working properly, the precision of the system

was tested using a standard substance. Six times a standard solution (100g/ml) was injected, and chromatograms were taken. Five determinations' retention time and area were measured, and the percent RSD was determined. The RSD of the peak area derived from six replicate injections should be less than 2.0%.

Precision of the method (Repeatability):

When the procedure is applied repeatedly to many samplings of homogenous samples, the precision of the analytical method is the degree of agreement

among individual test findings. Six replicate injections of assay concentration (100g/ml) of standard and sample solutions were analysed for method precision. The RSD for Olanzapine and Fluoxetine HCl percent Assay of six independent samples should not exceed 2.0 percent.

Robustness: The standard prepreation (100µg/ml) was injected six times for every varied conditions of flow rate, organic solvent, buffer pH, wavelength and chromatograms were recorded.System suitability criteria should be full filled.The absolute difference of % assay value in

Selection of wavelength:

each modified condition should be within ± 2.0 when compared to the original condition.^[13,19,20,21]

III RESULTS AND DISCUSSION:

For the determination of Olanzapine and Fluoxetine HCL from bulk and commercial formulations, a simple, precise, and cost-effective RP-HPLC method was devised and validated. Validation characteristics such as linearity, accuracy, precision, ruggedness, and robustness were used to validate the method according to ICH guidelines.

Fig 01:Overlain UVSpectra ofOlanzapine and Fluoxetine HCl Showingisobestic point at 228nm Optimized method Table 01

Mobile phase	0.02M NaH ₂ PO ₄ + 4ml TEA pH 6 by OPA
	(buffer) :Acetonitrile
Mobile phase concentration	55:45v/v
Injection volume	20µL
Diluent	Buffer : ACN(55:45)
Flow rate	1ml/min
Colum temperature	25°C
Colum	Hypersil BDS (C18), 250 x 4.6 mm,5µ
Wavelength	228
Run Time	14 min
Elution	Isocratic

METHOD VALIDATION

The validation study was carried out by International Conference on Harmonization. System suitability:

	Table 02. System suitability of Olanzapilie							
Injection No.	Injection Volume(µl)	RT (min)	Tailing Factor	Theoretical Plate	Peak Area			
1	20	4.36	1.54	7739	735818			
2	20	4.36	1.54	7789	733054			
3	20	4.36	1.54	7856	735920			
4	20	4.37	1.56	7935	739943			
5	20	4.37	1.55	7991	734026			
Mean		4.36	1.54	7862	735752			
SD	2638.908							
%RSD	0.36							

Table 02: System suitability of Olanzapine

Table 03: System suitability of Fluoxetine HCl

	14010	et system same							
Injection No.	Injection Volume(µl)	RT (min)	Tailing Factor	Theoretical Plate	Peak Area				
1	20	6.75	1.66	9280	1566935				
2	20	6.75	1.66	9323	1565258				
3	20	6.76	1.66	9322	1571773				
4	20	6.76	1.66	9296	1574402				
5	20	6.75	1.66	9296	1573986				
Mean	20	6.75	1.66		1570471				
SD	4158.782								
%RSD	0.26								

Specificity:

Table 04: Specificity of Olanzapine and Fluoxetine HCl

Componen tIng. vRecention Time (µL)Tailing FactorPurity ThresholdPurity AnglePeak AreaPeak Purity Purity
--

-	r	r		1			
Blank	20	-	-	-	-	-	-
Placebo	20	-	-	-	-	-	-
Standard Solution Olanzapin e	20	4.36	1.49	0.318	0.132	739120	Passes
Standard Solution Fluoxetine HCL	20	6.75	1.47	0.339	0.137	1797765	Passes
Sample Solution Olanzapin e	20	4.37	1.33	0.329	0.153	709969	Passes
Sample Solution Fluoxetine HCL	20	6.77	1.46	0.318	0.123	1758154	Passes

FORCED DEGRADATION STUDY:

 Table 05: Degradation Study of Sample

Degradation Conditions	Purity Angle		Purity Threshold		Total Impur	Total Area (includi	Highest % Unkno	Total %
	Olanzap ine	Fluoxe tine HCL	Olanza pine	Fluoxeti ne HCL	Area	main peak)	Impurit y	rity
Pure	0.153	0.123	0.329	0.318	8740	718709	0.855	1.216
Acid Stress	0.154	0.151	0.324	0.314	6855	729073	0.771	0.940
Alkali Stress	0.158	0.131	0.324	0.311	6852	731058	0.511	0.937
Oxidation	0.280	0.306	0.424	0.308	194171	612237	8.777	31.71 5
Heat Sol.	0.174	0.142	0.342	0.329	5996	717296	0.442	0.836
Thermal	0.155	0.137	0.324	0.318	4850	754973	0.270	0.642
Humidity	0.164	0.131	0.318	0.306	8457	734443	0.623	1.151
Photolytic	0.169	0.134	0.327	0.315	2043	746645	0.274	0.274

DOI: 10.35629/7781-0701780799 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 786

Linearity

Linearity solution	Concentration (µg/ml)	Area of Olanzapine	Mean area of Olanzapine	Std. deviation	%RSD
Linearity	10	380868			
L-1	10	379957	380413	455.502	0.12
(50%)		380415			
Linearity	15	552827			
L-2		552062	553343	1602.004	0.29
(75%)		555139			
Linearity	20	737729			
L-3	20	737293	737664	343.595	0.05
(100%)		737971			
Linearity	25	911956			
L-4		912947	912553	525.957	0.06
(125%)		912757			
Linearity	30	1142898			
L-5		1141736	1142395	596.370	0.05
(150%)		1142550			

Table 07: Regression studies of Olanzapine

Slope	Intercept	Regression Equation	Coefficient of correlation
37308	8070.9001	y=37308x-8070.9	0.996

Fig. 12: Calibration curve of Olanzapine

	Table 00: Emeanly studies of Fluoxetine field								
Linearity solution	Concentration (µg/ml)	Area of Olanzapine	Mean area of Olanzapine	Std. deviation	%RSD				
Linearity	26	836080	•						
L-1	30	836113	837201	1913.121	0.23				
(50%)		839410							
T in contin		1211586							
Linearity	54	1211067	1214749	5934.7747	0.48				
(75%)		1221596							
Linearity		1619268							
L-3	72	1614866	1617184	2210.362	0.14				
(100%)		1617419							
Linearity	00	1995630							
L-4	90	1995661	1995223	732.533	0.04				
(125%)		1994377							
Linearity	108	2495183							
L-5	100	2504978	2499433	5024.269	0.20				
(150%)		2498138							

Table 08. Linearity studies of Fluoyetine HCl

Table 09:	Regression	studies of	f Flue	oxetine	HCL

Slope	Intercept	Regression Equation	Coefficient of correlation
22718	7273.90	y=22718x-7273.9	0.996

Fig. 13: Calibration curve of Fluoxetine HCL

Remarks:

- A linearity graph of the average area of Olanzapine and Fluoxetine HCL against the concentration in ppm is plotted and found to be a straight line graph.
- \blacktriangleright The correlation coefficient is 0.0998.
- In the range of 50 percent to 150 percent of the prescribed concentration of Olanzapineis 9.99- 29.96g/ml and 35.84- 107.52g/ml, the approach is found to be linear.

Sample preparation	Amount spiked (mg)	Area of Olanzapine		Mean Area	Amount recovered	% Recoverv
propulation	spinea (ing)	Inj-1	Inj-2		(mg)	Recovery
At 50%-1	9.8	351222	349707	350465	9.86	100.61
At 50%-2	10	355202	354728	354965	9.99	99.90
At 50%-3	9.8	350403	349056	349730	9.84	100.41
					Mean	100.31
At 75%-1	15.7	560098	564316	562207	15.82	100.76
At 75%-2	15.8	562290	562086	562188	15.82	100.13
At 75%-3	15.9	560151	564471	562311	15.82	99.50
					Mean	100.13
At 100%-1	20.5	723542	724669	724106	20.37	99.37
At 100%-2	20.3	715538	721550	718544	20.22	99.61
At 100%-3	20.0	719281	709776	714529	20.10	100.50
					Mean	99.83
At 125%-1	24.7	866773	865139	865956	24.37	98.66
At 125%-2	25.9	923761	928500	926131	26.06	100.62
At 125%-3	25.7	926565	925802	926184	26.06	101.40

Accuracy

The evaluation obtained are shown in Table 8.11 and 8.12 respectively.

DOI: 10.35629/7781-0701780799

| Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 791

					Maan	100.22
	T				Mean	100.25
At 150%-1	30.7	1094322	1094322	1094322	30.79	100.29
At 150%-2	30.0	1079473	1080016	1079745	30.38	101.27
At 150%-3	30.5	1086140	1100429	1093285	30.76	100.85
					Mean	100.66

Remark:

> The mean recovery per concentration should be 99.83% - 100.66% for Olanzepine.

Sample preparation	Amount spiked	Area of Olanzapine Mean Area		Amount recovered	% Recovery		
• •	(mg)	Inj-1	Inj-2		(mg)		
At 50%-1	45.0	875540	873274	874407	45.41	100.91	
At 50%-2	45.4	880401	876809	878607	45.63	100.51	
At 50%-3	45.2	868388	874782	871585	45.27	100.15	
					Mean	100.52	
At 75%-1	66.7	1303304	1308863	1306084	67.83	101.69	
At 75%-2	67.2	1307711	1314542	1311127	68.10	101.34	
At 75%-3	67.9	1300808	1308235	1304522	67.75	99.78	
					Mean	100.94	
At 100%-1	92.3	1793248	1789879	1791564	93.05	100.81	
At 100%-2	91.5	1773065	1784732	1778899	92.39	100.97	
At 100%-3	90.8	1774333	1759401	1766867	91.77	101.07	
					Mean	100.95	
At 125%-1	107.4	2048143	2037637	2042890	106.10	98.79	
At 125%-2	111.8	2177804	2184311	2181058	113.28	101.32	
At 125%-3	111.9	2190766	2179053	2184910	113.48	101.41	
						100.51	
At 150%-1	135.4	2650973	2650973	2650973	137.68	101.68	
At 150%-2	135.8	2625730	2619046	2622388	136.20	100.29	
At 150%-3	135.7	2639049	2653420	2646235	137.44	101.28	
	·	·	·	•	Mean	100.94	

Table 11: Accuracy for Fluoxetine HCl

Remark:

> The mean recovery per concentration should be is 100.51% - 100.95% for Fluoxetine HCl.

Precision:

Table 12: System Precision			
Injection Number Peak Area of standards			
Olanzapine	Fluoxetine HCl		
735818	1566935		
	able 12: System Precis Peak Area of standard Olanzapine 735818		

2	733054	1562258
3	735920	1571773
4	739943	1574402
5	734026	1573986
Mean	73572	1570471
SD	2638.908	4158.782
%RSD	0.36	0.26
Tailing Factor	1.55	1.66

Remark:

> The percent RSD of the peak areas of five duplicate injections of standard preparation should not exceed 2.0% USP tailing factor.

Method Precision:

Table 13: Method	Precision of	Olanzapine	
			-

Sample	Sample wt	Area of Olanzapine		Moon Area	0/ Accov
Preparation	(mg)	Inj-1	Inj-2	Wieali Al ca	70 Assay
Set-1	1253.6	721266	724962	723114	101.69
Set-2	1251.8	713993	717843	715918	100.82
Set-3	1254.5	706350	710252	708301	99.53
Set-4	1253.1	720218	717726	718972	101.15
Set-5	1252.4	715532	715992	715762	100.75
Set-6	1251.2	720496	723319	721908	101.71
				Mean	100.94
				SD	0.805
				%RSD	0.80

Table 14: Method Precision of Fluoxetine HCl

Sample	Sample wt	ole wt Area of Fluoxetine HCL		Moon Area	9/ Accov
Preparation	(mg)	Inj-1	Inj-2	Mean Area	70 A55ay
Set-1	1253.6	1772976	1782591	1777784	101.36
Set-2	1251.8	1801385	1811859	1806622	103.15
Set-3	1254.5	1799652	1798896	1799274	102.51
Set-4	1253.1	1793925	1795593	1794759	102.37
Set-5	1252.4	1813589	1805224	1809407	103.26
Set-6	1251.2	1791392	1802195	1796794	102.64
				Mean	102.55
				SD	0.682
				%RSD	0.67

Remark:

۶

% RSD for quaintified assay of multiple sample preparation not more than 2.0%

Robustness:

Table 15: Robustness study of Olanzapine and Fluoxetine HCl

1)
1	.)

Change in Flow rate:					
	Parameters	meters Changed values			
	Flow rate	0.9 ml/min	1.1 ml/min		

Table 16: Flow Rate: 0.9 ml/min (i.e. -0.1ml/min)

Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
	804962	905505		100.94	0.99	0.65
Olanzanine	806227	805595	101.93			
onunnupine	797496	707139				
	796760	19/120				
	1973002	1077647			1.55	1 10
Fluoxetine	1982292	19//04/	101.00	102 55		
HCl	2008554	2008048	101.00	102.35	1.55	1.10
	2007542	2000048				

Table 17: Flow Rate: 1.1ml/min (i.e. +0.1ml/min)

Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
Olanzanina	660847	((000=				
	660947	660897	100.88	100.94	0.06	0.58
Olalizaphic	655620	654516				
	653411					
	1624478	1624566			0.47	
Fluoxetine HCL	1624654	1024500	102.08	102 55		1.02
	1648843	1647360	102.00	102.33		1.02
	1645876	104/300				

Table 18: Change inWavelength

Parameters	Changed values	
Wavelength	226nm	230nm

Table 19: Change in Wavelength: 226nm (i.e. -2nm)

Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
	757696		102.30	100.94		
Olanzapine	757909	757803			1.36	1.31
_	734338	734000				

	733661					
	1856237	1860650		102.55	1.32	0.49
Fluoxetine	1865081	1800059	102.07			
HCL	1840842	1040/47	103.87			
	1856452	1040047				

Table 20: Change in Wavelength: 230nm (i.e. +2nm)

		0	0		/	
Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
	757696				1.36	1.31
Olanzanine	757909	757803	102.30	100.94		
Olalizapine	734338	724000				
	733661	/34000				
	1856237	1860659			1.32	
Fluoxetine HCl	1865081		103.87	102.55		0.40
	1840842	1949647	103.07			0.47
	1856452	1040047				

Table 21: Change inpH:

Parameters	Changed values			
рН	5.8	6.2		

Table 22: Change in Buffer pH: 5.8 (i.e. pH -0.2)

Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
	743762	= 42526		100.94	0.29	0.57
Olanzanine	743309	743536	101.23			
Olulizapilie	739736	7 27117				
	734497	/3/11/				
	1810860	1810093				
Fluoxetine	1809326		102.07	102 55	0.49	1 20
HCL	1850441	18/2212	102.07	102.55	0.40	1.29
	1834185	1042313				

Table 23: Change in Buffer pH: 6.2 (i.e. pH +0.2)

Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
	742635	740400	49492	100.94		1.37
Olanzanine	756348	749492			0.26	
Olalizaphie	732575	722500	101.20		0.20	
	732424	132300				
Fluoxetine	1797825	1796364	102.11	102.55	0.44	0.26

HCL	1794903			
	1797825	1706264		
	1794903	1790304		

Table 24: Change in mobile Phase Composition:

Parameters	Changed values	
Ratio of Organic Solvent	+5%	-5%

 Table 25: Change in mobile phase composition: Organic solvent +5% (i.e. Buffer 52.7:ACN47.3)

Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
Olanzanina	7334453	722(72			0.02	0.13
	733891	/330/2	100.96	100.94		
Shunzaphic	732695	735555				
	738415					
	1771927	1772013			1.11	
Fluoxetine HCL	1773898	1//2915	101.04	102 55		1 76
	1820007	1825/77	101.04	102.55		1./0
	1830947	10434//				

Table 26: Change in mobile phase composition: Organic solvent -5% i.e. Buffer: CAN (57.3: 42.7)

Sample	Area	Mean area	% Assay	% Assay From Method Precision	% Variance From Method Precision	% RSD
Olanzapine	736415	737040	100.86	100.94	0.08	0.19
	737665					
	731258	734000				
	736741					
Fluoxetine HCL	1778050	1776251	101.33	102.55	1.22	1.75
	1774451					
	1818520	1818165				
	1817809					

Remark:

> The % RSD should not be more than 2.0%

> The % RSD between results obtained with changed condition not be more than 2.0%. Solution stability

Solution stability for Olanzapine and Fluoxetine HCL are shown in Table 8.28 and 8.29

Time interval (hrs)	Injection Volume(µg/ml)	Area of standard	Area of sample
Initial	20	806487	756234

 Table 27: Solution stability for Olanzapine

	20	807982	753477
4 Hrs	20	776891	756173
	20	780271	751139
	20	779341	760122
8 Hrs	20	779341	761614
	20	788711	756308
12 Hrs	20	779372	756422
	20	767791	740467
16 Hrs	20	762720	736856
	20	766025	745644
20 Hrs	20	768462	745644
	20	766884	753513
24 Hrs 36 Hrs	20	774377	747925
	20	777815	751721
	20	779734	750291
Mean	781029		751212
SD	13420.472		7117.529
%RSD	1.72		0.95

Table 28: Solution stability for Fluoxetine HCl

Time interval (hrs)	Injection Volume(µg/ml)	Area of standard	Area of sample
Initial	20	1739078	1909567
	20	1738486	1895748
4 Hrs	20	1669241	1902717
	20	1667874	1886141
8 Hrs	20	1664048	1912352
	20	1683847	1912996
12 Hrs	20	1683887	1901981
	20	1664544	1898856
16 Hrs	20	1639292	1864329
	20	1629497	1846515

	20	1642423	1873773
20 Hrs	20	1612120	10/07/10
24.11	20	1645878	1869781
	20	1635133	1881840
24 Hrs 36 Hrs	20	1658172	1878740
	20	1667676	1896665
	20	1674488	1895485
Mean	1674009		1889093
SD	32844.676		18791.923
%RSD	1.96		0.99

Remark:

The % RSD of replicate standard injections from initial to 36 hours should be not more than 2.0%.

The % RSD of sample preparation injections from initial to 36 hours should be not more than 2.0%.

Tablet	Drug		% Drug obtained ±	Std. error of estimation
		mg/tab	SD*	
Oleanz	Olanzapine	20	98.86±0.16	0.105
plus	Fluoxetine HCl	80	99.35±0.12	0.112

 Table 29: Tablet Analysis of Olanzapine and Fluoxetine HCl

*Mean of three determinations

Table 30: Summary of validation parameters of HPLC method

Parameter	Olanzapine	Fluoxetine HCL
Linearity (µg/ml)	10-30	36-108
Linearity Intercept	8070.90	7273.90
Linearity Equation	Y= 37308x-8070.9	Y=22718x-7273.9
\mathbf{R}^2	0.996	0.996
Oxidation degradation (%)	30.00	31.24
Precision(%RSD)	0.80	0.61
Accuracy	100.31-100.66%	100.51-100.95%
Robustness (%variance)	0.06-1.36	0.29-1.55
Solution stability (%RSD)	1.72-0.95	1.96-0.99

IV CONCLUSION

The devised HPLC method for determining stability was found to be simple, accurate, sensitive, precise, specific, and quick. This approach can be used to analyse Olanzapine and Fluoxetine HCl in bulk and pharmaceutical formulations such as tablets on a regular basis. This method was also utilised to verify the product's quality and stability following varying storage conditions and stress deterioration.

SOME OF THE ADVANAGES FROM THE ABOVE RESULTS

a)Robust analytical method

DOI: 10.35629/7781-0701780799

b)Quantification done by using less amount of organic solvents

c) Method can be applied for routine analysis of both of the drugs

d) Degradation study is also performed for better knowing of both drug.

REFERENCES:

[1]. Jeffery G.H., Basset J., Mendham J, Denney R.C., Vogel's Textbook of Quantitative Analysis, Longman Scientific and Technical,

| Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 798

5th edition, 1999, 10-11.

- [2]. Pavia D.L., Lampman G.M., Kriz G.S., Introduction to Spectroscopy, Thomson learning publication, 3rd edition, 2001, 356.
- [3]. Beckett A.H., Stenlake J.B., Practical Pharmaceutical Chemistry, CBS Publishers and Distributors, New Delhi, 4th edition, Part –II, 2002, 275-285.
- [4]. Sethi P.D., HPLC-Quantitative Analysis of Pharmaceuticals Formulations, CBS publishers and Distributors New Delhi, 4th edition, 2001, 3, 5, 11, 45, 116-120.
- [5]. Skoog D.A., West D.M., Holler F.J., Fundamentals of Analytical Chemistry, Harcourt College publishers, 7thedition, 2001, 15-37.
- [6]. Kasture A.V., Wadodkar S.G., Mahadik K.R., More H.M., Pharmaceutical Analysis. 5thedition, 2, 2002, 7.
- [7]. Reymond P.W., Chromatographic Science Series: Liquid Chromatography for Analyst, Marcel Dekker, 1st edition, 1994, 1.
- [8]. Willard H. H., Merritt L. L., Dean J. A., Settle F. A., Instrumental Methods of Analysis, CBS Publishers and Distributors Pvt. Ltd., 7th edition, 1988, 118-148, 598 -607.
- [9]. Chatwal G.R., Anand S.K., Instrumental Methods of Chemical Analysis, Himalaya Publishing House, 5thedition, 2008, 2.108-2.124.
- [10]. Skoog D.A., Holler F.J., Principle of Instrumental Analysis, Saunders College Publishing House, 6th edition,2007, 1-3,145-147.
- [11]. Sethi, P.D., High Performance Thin Layer Chromatography Quantitative Analysis of Pharmaceutical Formulations, CBS Publishers and Distributors New Delhi, 1st edition, 2001, 3-12, 23, 53-54.
- [12]. Sethi P.D., HPLC-Quantitative Analysis of Pharmaceuticals Formulations, CBS publishers and Distributors New Delhi, 4th

edition, 2001, 3, 5, 11, 45, 116-120.

- [13]. Sharma B.K., Instrumental Methods of Chemical Analysis, Goel Publishing House, Meerut, 23rd edition, 2004, 7-18.
- [14]. Pavia D.L., Lampman G.M., Kriz G.S., Introduction to Spectroscopy, Thomson learning publication, 3rd edition, 2001, 356.
- [15]. Settle F. Handbook of Instrumental Techniques of Analytical Chemistry, 1st edition; New Jersey: Upper Saddle River, 1st edition, 2004, 19-21, 609-17.
- [16]. Rao G.A., Textbook of Pharmaceutical Analysis. 2nd edition; New Delhi: Birla Publications Pvt. Ltd., 2nd edition, 2006,Volume 2, 1-4, 18-22.
- [17]. ICH Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2 (R1) International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, 2005, 1-13.
- [18]. ICH, Q2 (R1): Validation of Analytical procedure: Text and Methodology, International Conference on Harmonization, Geneva. 2005.
- [19]. FDA, Draft Guidance for Industry on Analytical Procedures and MethodsValidation Chemistry, Manufacturing, and Controls Documentation, FederalRegister, 2000, 65 (169), 52776–52777.
- [20]. ICH, Q1A and Q1B (R2): Stability Testing of New Drug Substances and Products, International Conference on Harmonization, Geneva. 2003.
- [21]. ICH, Q1F: Stability Data Package for Registration Application in Climatic zone III and IV, International Conference on Harmonization, Geneva. 2003.